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Abstract

Two-fluid turbulent dispersion models have been compared with direct numerical simulations (DNS) of

a decaying turbulence bubbly flow in the low Stokes number limit, St � 10�3. Because of the absence of

empiricism, DNS results represent an excellent means of assessing turbulent dispersion models. Sufficiently

far away from the inlet of the channel, where the turbulence was fully developed, these turbulent dispersion
models were able to predict the DNS results when a Schmidt number, Scb ¼ 0:83, was used. This result
highlights the fact that even bubbles of diameter, Db ¼ 42 lm, considerably smaller than the Kolmogorov
length scale, g ¼ 75 lm, do not behave as passive scalars for which Scb ¼ 1. In addition, these models were

also assessed against a bubbly mixing layer flow having a low Stokes number, St < 10�2. Most of the

models successfully predicted these mixing layer data. Moreover, for Stokes numbers much smaller than

unity several of the models were virtually identical. No adjustable coefficients were used in the mixing layer

data comparisons.

� 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Bubbles in a turbulent flow move along fluctuating trajectories as they interact with the
turbulent liquid eddies. These fluctuations can disperse the bubbles. Two-fluid models have
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accounted for this dispersion by introducing a force proportional to the gradient of the void
fraction in the momentum equations of the dispersed phase (Drew and Passman, 1999; Lahey
et al., 1993; Carrica et al., 1999; Drew, 2001).
Fully developed vertical duct flow experimental data (Lopez de Bertodano, 1991; Lahey et al.,

1993; Alajbegovic et al., 1999), for bubbles or spherical particles of diameter D � 2 mm, were
successfully predicted by assuming that the dispersion force is proportional to the product of the
kinetic energy of the liquid phase turbulence and the volume fraction gradient of the dispersed
phase.
Similarly, Drew and Passman (1999), Drew (2001) and Lopez de Bertodano (1998) have pro-

posed that the dispersion force is proportional to the Reynolds stress tensor of the dispersed and
continuous phase, respectively, and a scalar coefficient, which is a function of the Stokes number
(i.e., the ratio of the response times of the bubbles or particles and liquid eddies). Lopez de
Bertodano (1998) was able to fit the data of an air/solid-particle jet using this type of model.
Alternatively, Carrica et al. (1999) proposed a model specifically designed for very small

bubbles, for which the drag force was dominant. This model has been used for calculating bubbly
flows around naval surface ships (Carrica et al., 1999; Larreteguy et al., 1999).
In the model validations carried out by Lopez de Bertodano (1991, 1998), Lahey et al. (1993)

and Alajbegovic et al. (1999), there were some sources of uncertainties. In particular, the lift force
was modeled and the liquid phase turbulence was characterized by a k–� model, which though
widely used, is not free from error.
Druzhinin and Elghobashi (1998) have performed two-phase direct numerical simulations

(DNS) of bubbly flows for very small bubbles that obey a Stokes drag law. These simulations
provide an excellent test for two-fluid turbulent dispersion models. Not only are there no sources
of uncertainties associated with evaluating the dispersion modeling, but the bubbles are exposed
to an evolving turbulence field.
In this work the decaying isotropic turbulence DNS of Druzhinin (2000), and the bubbly

mixing layer experimental data of Martinez and Lasheras (1997, 2001), were used to assess the
turbulent dispersion models discussed above. The methodology employed consisted of using the
DNS results to find the optimum turbulent dispersion coefficients for each model and then using
the mixing layer data of Martinez and Lasheras (1997, 2001) to evaluate the prediction capabilities
of the models in a more complex flow. In addition, analytical comparisons of the models were
carried out to show that in the small Stokes number limit they render similar results.

2. Description of turbulence dispersion models

Unlike DNS, a two-fluid model predicts the ensemble-averaged bubble velocities and void
fraction. 2 Since the instantaneous bubble velocity fluctuations are not resolved, closure laws are
necessary to take into account how the fluctuating motion of the liquid disperses the bubbles. The

2 Notice that both the DNS and the ensemble-average simulations are based on the concept of two interpenetrating

fluids. However, the DNS does not require closure laws, while the ensemble-average approach does. Thus we talk about

a two-fluid formulation and a two-fluid model for the DNS and the ensemble-average, respectively.
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momentum equation of the bubbles can be derived using ensemble-averaging (Drew and Pass-
man, 1999, Section 11.3; Larreteguy et al., 1999). The result is:

adqd
oud

ot

�
þ ud � rud

�
¼ r � adðTd þ TRe

d Þ þ adqdgþMd � Tdi � rad; ð1Þ

where the subscript d indicates dispersed phase, a is the void fraction, q is density, u is the velocity,
Td, T

Re
d and Tdi are the viscous stress tensor, the Reynolds stress tensor, and the interface stress

tensor of phase d, respectively, and g is the acceleration of gravity. The interfacial momentum
source density,Md, needs to be constituted in order to achieve closure. In this study drag (D) and
turbulent dispersion (TD) dominated the exchange of momentum between the phases. Thus,

Md ffiMD
d þMTD

d : ð2Þ

As in the DNS, Stokes law was used for drag,

MD
d ¼ �adqc

3

8

CD

Rd
urjurj; ð3Þ

where ur and Rd are the relative velocity between the bubble and the liquid, and the bubble radius,
respectively, and the drag coefficient, CD, for Stokes drag is:

CD ¼ 24

Red
¼ 12m

jurjRd
; ð4Þ

where Red and m are the Reynolds number of the bubble and the liquid kinematic viscosity, re-
spectively.
For air bubbles of diameter Db ¼ 2Rd ¼ 42 lm in water moving at their terminal rise velocity,

uT ¼ D2
bg=18m, it is found that CD ¼ 590. Thus, drag is a dominant force and most other terms in

Eq. (1) are negligible, with the exception of buoyancy and turbulence dispersion, MTD
d , which is

the main focus of this work. More specifically, we neglect the left-hand side of Eq. (1), the dis-
persed phase Reynolds stress, and the viscous part of Td and Tdi. It must be noted that the left-
hand side of Eq. (1) and the dispersed phase Reynolds stress can be neglected in all flows for which
the ratio of discrete and continuous densities is very small, even if the flow of the disperse phase is
not dominated by drag. We further assume that the difference between the pressure of phase-k, pk,
and its interfacial counterpart, pki, k ¼ c, d, is negligibly small. This makes it possible to relate the
continuous and discrete phase pressures and conclude that for the small bubbles considered in this
work, the momentum equation of the discrete phase, Eq. (1), can be approximated as,

MD
d þMTD

d þ adqdg� adrpc � 0: ð5Þ

It is worth noting that due to buoyancy the relative bubble velocity is finite. This finite relative
velocity, and the large value of the drag coefficient, are what makes drag so dominant in the
momentum equation. In addition, the gradient of the continuous phase pressure, pc, cannot be
neglected in any analysis that includes gravity, since gravity will produce a hydrostatic pressure
gradient. The main purpose of this paper is to study the constitutive models for MTD

d ; in par-
ticular, The bubble dispersion models which were considered are those of Lopez de Bertodano
(1991, 1998), Drew (2001) and Carrica et al. (1999).
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2.1. The models of Lopez de Bertodano

The following turbulent dispersion model has been widely used:

MTD
d ¼ �CL

TDqckrad; ð6Þ

where k is the kinetic energy of the turbulence of the continuous phase. This model has been used
with a constant (uniform in the computational domain) and variable (non-uniform) values of CL

TD.
The former version has successfully fit fully developed bubbly and solid/fluid flows in a triangular
duct (Lopez de Bertodano, 1991) and a pipe (Alajbegovic et al., 1999; Lahey and Drew, 1999). In
both cases the discrete phase consisted of inclusions (bubbles or solid spheres) which were ap-
proximately 2 mm in diameter. Thus, the drag coefficient was of the order of unity. A constant
coefficient, CL

TD ¼ 0:1, fit the data in both cases (Lahey et al., 1993; Alajbegovic et al., 1999).
In an effort to extend the range of applicability of this model, Lopez de Bertodano (1998)

proposed a non-uniform turbulent dispersion coefficient for homogeneous turbulence that de-
pends on the Stokes number, St, which is the ratio of the time response of the dispersed particles,
sd, and the liquid eddies, sc, respectively. This model was inspired by the work of Reeks (1991),
who derived a balance equation for the probability density function (pdf) of the bubbles in phase
space. In order to obtain closure, Lopez de Bertodano (1998) assumed that the turbulence
autocorrelation function follows the law,

u0cðx; 0Þu0cðx; tÞ ¼ u0cu
0
c expð�t=scÞ: ð7Þ

With this hypothesis is possible to evaluate analytically the integrals in the work of Reeks (1991),
and thus to calculate the dispersion force (Lopez de Bertodano, 1998). The final result for the
particular case of isotropic turbulence is the variable coefficient,

CL
TD ¼ C1=4

l

1

Stð1þ StÞ ; St � sd=sc; ð8Þ

which coupled with a modified k–� model to account for the extra dissipation introduced by the
particles, was successfully used to fit data for a solid/air two-phase jet. In Eq. (8), Cl is a constant
that the k–� model sets to Cl ¼ 0:09, and the bubble response time is given by,

sd �
8

3

Rd
CDjurj

: ð9Þ

which, for Stokes law, becomes a constant independent of position, sd ¼ 2R2d=9m.
In order to estimate sc Lopez de Bertodano (1998) considered two contributions. Namely, that

of the time scale of the turbulent eddies and that of the time it takes a bubble to move relative to
these eddies. The former is,

sc ¼ C3=4
l k=�; ð10Þ

where � is the dissipation of the turbulence. The latter is the eddy cross over contribution (Loth,
2001; Lopez de Bertodano, 1998), which can be estimated based on the characteristic length scale
of the eddies and the relative velocity of the bubble. For the flows considered herein the second
contribution was negligible.
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It should be noted that Eq. (8) predicts turbulent dispersion coefficients of order unity for
bubbles with St � 1. This prediction is in rough agreement with the experimental findings of
Alajbegovic et al. (1999), Lahey et al. (1993), and Lopez de Bertodano (1991) for fully developed
conduit flow and 2 mm particles or bubbles. On the other hand, for small bubbles with trajectories
dominated by drag, St  1, Eq. (8) predicts turbulent dispersion coefficients much larger than
unity.

2.2. The models of Drew

Drew (Drew and Passman, 1999; Drew, 2001) proposed a turbulent dispersion model for small
fluid eddy time scales that is of the form:

MTD
d ¼ CD

TD

qc
qd
TRe
d � rad; ð11Þ

where the turbulence dispersion coefficient, CD
TD, is a function of the Stokes number. Lopez de

Bertodano (1998) also proposed a model of this form, except that the Reynolds stress of the
continuous phase takes the place of that of the discrete phase, in the equation above. For isotropic
turbulence, the Reynolds stress tensor of the dispersed phase can be written as,

TRe
d ¼ �2

3
qdkdI: ð12Þ

In addition, examination of the DNS results that were used in this study show that,

kc � kd: ð13Þ
Combining Eqs. (11)–(13), it is concluded that for isotropic turbulence, this model is similar in
form to that proposed by Lopez de Bertodano, Eq. (6); however, the values of the coefficient CD

TD

derived by Drew and Passman (1999) were much smaller than those found in the DNS.
Drew (2001) also derived a dispersion model for large eddy times. This model is based on the

Boltzmann equation (see Chapman and Cowling, 1939) for the particle probability distribution
function f ðx; ud; tÞ

of
ot

þr � ðudf Þ þ
o

oud
� ðf adÞ ¼ 0; ð14Þ

where ad is the force on an individual particle. Reeks (1991) also started from a kinetic equation,
and obtained closure by requiring that the phase space diffusion coefficient be invariant to a
random Galilean transformation. Unlike Reeks (1991), Drew put the emphasis on obtaining the
dispersion term in the momentum equation and not in the continuity equation. As will be shown
below, in the model of Drew (2001), simple physical arguments suffice to obtain closure. Multi-
plying Eq. (14) by the velocity, and averaging over the fluctuating velocities gives the momentum
equation of the discrete phase in the form

ondud
ot

þr � ndudud ¼ f ad ¼ ndadðucÞ þ f a0d: ð15Þ

Here adðucÞ denotes the force on the bubble due to the average fluid flow, and a0d is the force due to
turbulent fluctuations in the fluid. Note that f a0d is the turbulent dispersion force and nd is the
dispersed phase number density. If we model the probability distribution function as
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f ðx; ud; tÞ � ndðfÞ � ndðxÞ þ ðf � xÞ � rndðxÞ; ð16Þ
where f is a position in the neighborhood of x, we see that,

f a0d � a0dðf � xÞ � rnd: ð17Þ
Thus, in agreement with Reeks (1991), the correlation between force and displacement is the
dispersion tensor.
For bubble relaxation times comparable with the eddy time scales, the velocity of the particle

will respond to the fluid velocity fluctuations by relaxing to them. However, for eddy times much
longer than the bubble relaxation time a particle entrained in an eddy will move in the eddy until it
is no longer together. Moreover, we shall assume that the force exerted by the eddies on the
particle is constant. Then drag balances the force,

1

sd
u0d � a0d ð18Þ

and the displacement is

f � x � u0dt
0; ð19Þ

where t0 is time. Hence,

a0dðfxÞ �
t0

sd
u0du

0
d ¼ � se

sd
u0du

0
d;

where se is the average time that the bubble is entrained in the eddy. If we assume that this time is
proportional to the characteristic time of the eddy, we have

CD
TD ¼ CD

1TD

sc
sd

¼ CD
1TD

1

St
; ð20Þ

where CD
1TD is a constant that must be fitted to data.

We note that this model agrees with Lopez de Bertodano (1998), Eq. (8), if the Stokes number,
St, is much smaller than unity, and CD

1TD ¼ 3=2C1=4
l .

2.3. The model of Carrica

Carrica et al. (1999) proposed,

MTD
d ¼ �CC

TDCD
3

8
qc

jurj
Rd

meffc rad; ð21Þ

where the turbulent dispersion coefficient CTD is defined by:

CC
TD ¼ Sc�1b ¼ mbubble

meffc
; ð22Þ

and Scb is the Schmidt number of the bubbles, which relates the effective kinematic viscosity, meffc ,
to the diffusivity of the bubbles, mbubble. Since Eq. (13) indicates that the bubbles in this flow behave
approximately as passive scalars, Eq. (22) implies that a coefficient of order unity should fit the
data. Note that the eddy viscosity of the k–� model,
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mTc ¼ Clk2=�; ð23Þ
was used to calculate meffc .
The motivation for this model was to obtain a diffusion equation for the void fraction when the

momentum equation of the discrete phase is given by Eq. (5). Substituting Eqs. (3) and (21) into
Eq. (5) for an assumed hydrostatic pressure gradient yields (Drew and Passman, 1999),

ðqd � qcÞadð1� adÞg� adqc
3

8

CD
Rd
urjurj � CC

TDCD
3

8
qc

jurj
Rd

meffc rad ¼ 0; ð24Þ

which, after solving for the relative velocity, ur, can be written as,

adur � adðud � ucÞ ¼ �CC
TDmeffc rad þ aduT � �Ddrad þ aduT; ð25Þ

where uc is the velocity of the continuous phase, and uT is the terminal rise velocity of the bubbles,
given by,

uT ¼ 8ðqd � qcÞadð1� adÞRdg
3CDqcjurj

:

The bubble�s mass conservation equation,

oad
ot

þr � adud ¼ 0; ð26Þ

can rewritten, using Eq. (25), as,

oad
ot

þr � adðuc þ uTÞ ¼ r � Ddrad: ð27Þ

This last equation is similar to one which has been frequently used to model diffusive transport in
fluids (Taylor, 1953). Thus, the model of Carrica is consistent with modeling the transport of
small bubbles by adding a diffusive term to the bubble�s mass conservation equation, with the
bubble diffusivity given by,

Dd ¼ CC
TDmeffc ¼ meffc

Scb
: ð28Þ

An important advantage of modeling turbulent dispersion as a force in the momentum equation,
rather than as a diffusivity, is that other forces, such as lift and virtual mass, are easily included as
additional terms in the momentum equation. This is not the case when dispersion is modeled in
the mass conservation equation, as in Eq. (27). The drag coefficient, CD, in Eq. (21) takes into
account the expected variation of turbulent dispersion with bubble size. In particular, it provides a
simple way to make sure that, for flows dominated by drag, the momentum balance reduces to the
form given in Eq. (5). As the bubble size increases, the drag and turbulence dispersion terms in Eq.
(1) will become less dominant and other contributions to the momentum of the bubbles will play a
more important role.
We will now show that the model of Carrica, the latest model of Lopez de Bertodano (1998)

and the model of Drew (2001), given by Eqs. (21), (8)–(10), and (11)–(13), and (20), respectively,
are very similar in the passive scalar limit. For this purpose we note that using the expressions
given in Eqs. (9), (10), and (23), it is possible to rewrite Eq. (21) as,
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MTD
d ¼ �CC

TDqc
C1=4

l

St
krad: ð29Þ

Thus Eq. (6) implies,

CL
TD ¼

C1=4
l

St
CC
TD: ð30Þ

This equation clearly shows that for a constant coefficient, CL
TD, the models of Lopez de Ber-

todano (1991) and Carrica et al. (1999) can produce similar results only when the Stokes number
varies little in the computational domain. In contrast, for the non-constant coefficient version of
the model of Lopez de Bertodano (1998), after combining Eqs. (8) and (30), we find that,

CC
TD ¼ 1=ð1þ StÞ:

In the passive scalar limit, St ! 0, the ratio above tends to unity, and both models should produce
very similar results, since CC

TD is of order unity. We showed in a previous section that the model of
Drew (2001) for small Stokes number differs from that of Lopez de Bertodano (1998) by the factor
1=ð1þ StÞ. Thus, the model of Drew for small Stokes number is identical to that of Carrica et al.
(1999) and in this work there was no need to compare the model of Drew and Carrica separately
to the DNS simulations.

3. Discussion of results of the DNS simulations

DNS of decaying 3D isotropic turbulence was performed for a bubbly flow. A schematic of the
two-dimensional flow considered is shown in Fig. 1. The fluid velocity was vertically upwards with
a non-dimensional mean advection velocity, U0 ¼ 0:6, and non-dimensional RMS fluid velocity,
u0 ¼ 0:04. The inlet and outlet planes were located at x ¼ 0 and x ¼ 4, respectively.
Bubbles of diameter, Db ¼ 42 lm, obeying a drag Stokes law, were injected at the inlet plane,

x ¼ 0. At this plane the initial bubble void fraction distribution was Gaussian.
For the sake of simplicity, in all sections of this paper, the ensemble averaging symbol, hi, is

omitted. Unless explicitly stated all quantities are ensemble averaged, as required in two-fluid
modeling (Drew and Passman, 1999). The following average quantities were obtained from the
DNS simulations:

0

1

1 g

4 x

U0

Fig. 1. The geometry of the computational domain in DNS.
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• The turbulence kinetic energy of the liquid phase.
• The dissipation of the liquid phase.
• The skewness of the streamwise velocity derivative.
• Void fraction profiles, aðyÞ, at x ¼ 0; 1; 2 and 3.5.
• The Reynolds stress of the dispersed phase, T Re

dij ¼ �haqdu
0
diu

0
dji=hai.

The following power law fits of the turbulence kinetic energy, k, and dissipation, �, obtained
from the DNS simulations, were used as input for the turbulence dispersion models,

k ¼ k0
x� xs þ x0

x0

� ��n

;

� ¼ �0
x� xs þ x0

x0

� ��n�1

;

ð31Þ

where k0 ¼ kðxsÞ, �0 ¼ �ðxsÞ and the DNS data are from the region xP xs ¼ 1. The fitted pa-
rameters were the exponent of the power law, n, and the virtual origin, x0. Functions of the form
given in Eq. (31) with 1 < n < 1:2 are known to successfully fit experimental data for single-phase
decaying grid turbulence (Hinze, 1987). The analytic solution of the k–� model for homogeneous
isotropic decaying turbulence is of the form of Eq. (31), with n ¼ 1=ðC�2 � 1Þ ¼ 1:0870, where
C�2 ¼ 1:92 is a constant. Significantly, n ¼ 1:0870 successfully fit all DNS results. The virtual
origin which results from the fits of the DNS data and the solution predicted by the k–�model can
be found in Table 1. Plots of the evolution of the kinetic energy and the dissipation in non-
dimensional form can be seen in Fig. 2.
The differences between the DNS and the k–� solutions can be explained by observing that the

turbulence Reynolds numbers of the DNS are below the range of applicability of the k–� model.
More specifically, for the DNS the Reynolds number based on the turbulence intensity and the
integral length scale was 87, while the Reynolds number based on the turbulence intensity and the
peak wave number of the initial spectrum was 312. These Reynolds numbers are low compared
with grid Reynolds numbers of the experiments (103) to 104) typically used to calibrate k–� tur-
bulence models (Townsend, 1976).
The skewness of the streamwise velocity derivative grows as x increases until it reaches its

asymptotic value at approximately x ¼ 1. This skewness is a measure of the average rate of
production of enstrophy by vortex stretching, or the rate of nonlinear energy transfer from the
low to high wave numbers (Elghobashi and Truesdell, 1992). Thus, until the skewness reaches its
asymptotic value at approximately x ¼ 1, the predicted turbulence is not valid. For this reason,
only the region x > 1 was considered for validation of turbulence dispersion models.

Table 1

The virtual origin, x0, for different initial positions, xs

xs x0

DNS fit 0 1.2

k–� solution 0 8.1

DNS fit 1 2.1

k–� solution 1 7.5
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The Stokes number of the DNS data can be estimated using Eqs. (9) and (10) and the plots of
the kinetic energy and dissipation of the turbulence in Fig. 2. It is concluded that the Stokes
number changes from St ¼ 1:43� 10�3 at x ¼ 1 to St ¼ 0:91� 10�3 at x ¼ 4.

4. Two-fluid model predictions of DNS results

The multidimensional computer code CFDShipM (Larreteguy et al., 1999; Carrica et al., 1999)
was used to make two-fluid model predictions. In runs 1 and 2 the liquid phase solution came
from the DNS results, while in runs 3 and 4 the k–�model was used. This code has been previously
used for calculating bubbly flows around naval surface ships (Carrica et al., 1999) and to validate
bubbly flow models in simple geometries (Larreteguy et al., 1999, 2002). The inlet boundary
condition came from the DNS simulations at x ¼ 1. The sides and outlet boundary conditions
were,

oud; vd; n
oxi

¼ 0; ð32Þ

where ud; vd; n and xi are the streamwise and lateral bubble velocity, the bubble number density,
and the spatial coordinate normal to the boundary surface, respectively. It should be noted that
for a monodisperse bubble population the void fraction and the number density are related via the
volume of the bubbles. Since from the point of view of the ensemble-averaged flow, the problem is

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

-3

k. DNS
ε. DNS                    
k. DNS. Fit for x>1
ε. DNS. Fit for x>1
k. k-ε model for x>1
ε. k-ε model for x>1

Fig. 2. The kinetic energy and the dissipation in dimensionless form for the DNS simulations and k–� model predic-
tions.
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symmetrical around the y ¼ 0:5 axis, only half of the computational domain of the DNS was
simulated in the ensemble-averaged runs. In order to diminish the error introduced by the outlet
boundary condition, the computational domain was extended to x ¼ 15� 4, where x ¼ 4 is the
end of the computational domain for the DNS simulations. The use of a non-uniform grid made it
possible to extend the length of the computational domain without significantly increasing the
computational cost. The methodology adopted was to find the optimum turbulent dispersion
coefficient that fits the DNS void fraction profile at xs þ 1, where xs ¼ 1 was the starting plane of
the simulations. The validity of the model was assessed as to how well it fit the remaining void
fraction profile.
Table 2 shows a summary of the runs made and their results. Only the constant coefficient

version of Lopez de Bertodano (1991) was used. The variation of the Stokes number from
St ¼ 1:43� 10�3 at x ¼ 1 to St ¼ 0:91� 10�3 at x ¼ 4, was not considered strong enough to justify
the use of the non-uniform version of Lopez de Bertodano (1998). As discussed previously, the
region x < 1 was excluded from the simulations, since the DNS results there were not fully de-
veloped.
As can be seen in Fig. 3, all models fit the DNS predictions quite well. It should be noted that

the model of Carrica has a coefficient of order unity. The coefficient CC
TD ¼ 1:2 in run #2 is a very

reasonable value in light of Eq. (22), and the fact that the DNS results indicate that the bubbles
behave as passive scalars. The coefficient CL

TD ¼ 500 obtained for the Lopez de Bertodano (1991)
was quite well predicted by Eq. (8), which yields CL

TD � 468, when an average Stokes number of
St ¼ 1:17� 10�3 is used. Thus, the variation of the Stokes number in the computational domain is
smooth enough to justify the usage of a constant coefficient, CL

TD.
It is also interesting to note that putting CC

TD ¼ 1:2 in Eq. (30), and assuming that the Stokes
number changes only due to changes in the bubble diameter (i.e., sc remains constant), indicates
that the coefficient CL

TD should vary from CL
TD ¼ 500 for Db ¼ 42 lm to CL

TD � 0:1 for Db ¼ 2 mm,
which is consistent with the values found for fully developed conduit flow (Alajbegovic et al.,
1999; Lahey et al., 1993; Lahey and Drew, 1999; Lopez de Bertodano, 1991). Thus, it appears that
CC
TD ¼ 1:2 successfully predicts the dispersion behavior of both small and large bubbles.
Runs #3 and 4 were made to study the sensitivity of the turbulent dispersion coefficient to

errors in k and �. In Fig. 4 it can be seen that for the models of Lopez de Bertodano and Carrica,
the void fraction profiles change very little when the k and � from the DNS is exchanged by those
from the k–� model. This is very interesting, since Fig. 2 indicates significant differences between
these predictions. This marked insensitivity to errors in the characterization of the turbulence is
apparently due to the fact that if a model overestimates the dispersion coefficient, the result will be

Table 2

Description of two-fluid model simulations made

Run # xs Dispersion model CTD for
xs6 x6 xs þ 1

Successful fit for

x > xs þ 1?

Figure

number

1 1 Lopez de Bertodano (1991) 500 YES 3(a)

2 1 Carrica 1.2 YES 3(b)

3 1 Carrica and k–� model 1.2 YES 4(a)

4 1 Lopez de Bertodano (1991)

and k–� model
500 YES 4(b)
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a premature flattening of void fraction gradients, which in turn will reduce bubble dispersion and
thus diminish the overestimation. Thus, the error is quickly self-correcting. This insensitivity is
highly desirable in most engineering applications, since errors in the turbulent kinetic energy and
dissipation may be present. This compensation effect also helps to explain why both models (i.e.,
that of Carrica et al. (1999) and the constant coefficient version of Lopez de Bertodano (1991)),
which model turbulence dispersion very differently, successfully fit the DNS results.
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Fig. 3. Void fraction profiles for simulations starting at xs ¼ 1. Symbols: DNS data. Lines: CFDShipM results.

(a) Lopez de Bertodano with CTD ¼ 500. (b) Carrica et al. with CTD ¼ 1:2.
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5. The bubbly mixing layer

The results presented previously do not completely assess the prediction capabilities of the
models. The DNS simulations were limited to a single bubble size. In addition, isotropic decaying
grid turbulence is a relatively simple turbulence structure, and it is desirable to test whether the
self-correcting feature of the models will be strong enough to allow the models of Lopez de
Bertodano (1991) and Carrica et al. (1999) to yield the same results in a different flow. In the
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Fig. 4. Void fraction profiles for simulations starting at xs ¼ 1 using k–� model instead of DNS data. Symbols: DNS
data. Lines: CFDShipM results. (a) Lopez de Bertodano with CTD ¼ 500. (b) Carrica et al. with CTD ¼ 1:2.
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following sections we will assess the prediction capabilities of the models by simulating the
polydisperse bubbly turbulent mixing layer data of Martinez and Lasheras (1997, 2001). This
dataset was chosen due to the small Stokes number, St < 10�2, quoted by the authors (Martinez
and Lasheras, 2001). These simulations were not used to obtain a fit for CTD, rather the coefficients
obtained from the decaying grid turbulence simulations were used. This is particularly appro-
priate since Martinez and Lasheras (2001) observed that dispersion is independent of bubble size
in the range, St < 10�2, covered in their data.

5.1. Description of the experiment

Martinez and Lasheras (1997) characterized the dispersion of bubbles in a plane, horizontal
turbulent mixing layer using a combination of a phase Doppler particle analyzer, and laser
scattering measurements. The turbulent shear layer was created by a splitter plate dividing a low
velocity stream (u1 ¼ 0:07 m/s) in the upper part from a high velocity stream (u2 ¼ 0:28 m/s) in the
lower part. The characteristics of both streams were as follows:
Upper (low velocity) flow:

u1 ¼ 0:07 m=s;

uRMS1 ¼ 0:010 m=s;

k1 ¼ 0:0003 m2=s2:

Lower (high velocity) flow:

u2 ¼ 0:28 m=s;

uRMS2 ¼ 0:018 m=s;

k2 ¼ 0:001 m2=s2:

A uniform concentration of polydisperse size bubbles, with diameters ranging from 10 to 150 lm,
was injected in the lower stream of tap water. Many features of the bubbly flow were measured at
selected stations (i.e., x ¼ 0:025, 0.050, 0.100, 0.150, 0.200, 0.250, 0.300, and 0.350 m) downstream
of the trailing edge of the splitter plate. In particular, the bubble�s volume probability density
function, mean and Sauter mean diameters, and the void fraction profiles in the vertical direction
were measured.

6. Two-fluid model predictions of a bubbly mixing layer

The computer code CFDShipM (Larreteguy et al., 1999) was again used to carry out two-fluid
simulations. Only one-way coupling interactions were considered, since the influence of the
bubbles on the liquid was negligible. The domain simulated was [0.025 m)0.600 m]� [)0.140
m)0.190 m], and the edge of the splitter plate corresponds to the location x ¼ 0, y ¼ 0.
The upstream boundary of the domain has been situated at the position of the first measure-

ment station (x ¼ 0:025 m), so as to use the experimental data available there as inlet conditions
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for the simulation. The inlet boundary conditions are dominated by the free stream conditions far
above and below the splitter-plate, and by the growing turbulent boundary layer close to the plate.
The k–� model was used to model the turbulence of the liquid. Inlet boundary conditions were

based on the observation that the free stream kinetic energy of the turbulence, k, was about 10–
15% of that produced by the shear itself, so it could not be neglected. On the other hand, the
boundary layer contribution at the inlet was estimated to be an order of magnitude less than that
of the free stream. Thus the splitter plate acted more like a sink than a source of turbulence. The
peak of turbulent kinetic energy observed in the experimental results near the plate was then
entirely due to production in the shear layer.
The transversal velocity of the carrier phase, v, at the inlet was not measured, but could be

reasonably estimated from the continuity equation using the experimental measurements of the
streamwise liquid velocity, u, at the first two measuring stations.
The upper and lower boundaries were considered as slip surfaces, in order to avoid the sim-

ulation of the corresponding boundary layers. The downstream boundary conditions were of the
form of Eq. (32).
The values of the CTD coefficients were taken from the previous DNS predictions. Indeed, the

idea was to see if the values that were good for a simple flow (decaying homogeneous turbulence),
were still good for simulating the more complex mixing layer.
Only drag and turbulent dispersion contributed to the exchange of momentum between the

phases. This fact stems from the order of magnitude estimates already presented in the DNS
section, and from direct verification by means of numerical simulations, in which the effect of lift
was shown to be negligible. Unlike the DNS simulations, the drag law which was used was,

CD ¼ 24

Red
ð1þ 0:15Re0:687d Þ; ð33Þ

which quantifies the drag of a dirty-water bubble. We approximated the measured probability
density function using four groups of bubble diameters, Db ¼ 33, 52, 66 and 82 lm. These bubbles
are small enough to be approximated as rigid spherical bodies when calculating drag coefficients.
Since tap water was used in the experiments, there is no need to account for internal circulation as
a drag reduction mechanism. Details on the implementation of polydisperse runs into CFDShipM
can be found in Carrica et al. (1999).

7. Results

Four different options were considered: (1) no turbulent dispersion term, (2) the turbulent
dispersion model of Carrica et al. (1999) with CTD ¼ 1:2, (3) the turbulent dispersion model of
Lopez de Bertodano (1991) with CL

TD ¼ 500, and (4) the turbulent dispersion model of Lopez de
Bertodano (1998) with CL

TD ¼ C1=4
l =ðStð1þ StÞÞ, where the Stokes number was calculated using

Eqs. (9) and (10).
In Fig. 5, the experimental void fraction profiles, normalized by the void fraction at the inlet,

a1, are compared against the results obtained for the four above-mentioned models. The width of
the upper channel, L ¼ 0:2 m, was used as the characteristic length. The results are shown at the
locations x ¼ 0:025, 0.050, 0.150, and 0.250 m. Fig. 5a shows the fitting of experimental data that
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was used as the inlet condition for the void fraction. It is clear from the rest of the figures, b, c, and
d, that model (1) (i.e., no turbulent dispersion) behaves poorly in the whole domain, which implies
that turbulent dispersion plays a key role in this particular problem.
In contrast, the models of Carrica et al. (1999) and Lopez de Bertodano (1998), with a non-

uniform coefficient, agree well with the data, but there are some differences between experimental
and numerical results in the low void fraction section of the distribution. The same line style,
dotted, is used for both models in Fig. 5 because the difference between them is of the order of the
the line width. The similarity of the predictions of these two models is not surprising given Eq.
(30) and the fact that the Stokes number is much smaller than unity in the whole computational
domain and for any bubble size. The very small Stokes number also means that the model of
Drew and Carrica are identical for this flow. The differences between the predicted and measured
values in the low void fraction region could be attributed to uncertainties on the inlet boundary
condition of k and � and the fact that in this spatially growing flow, small errors at the inlet might
amplify downstream. These uncertainties arise from the fact that the k and � profiles at the inlet
were not measured. We believe that given these uncertainties, the agreement between experimental
and simulated results of void fraction are excellent for the models of Carrica et al. (1999), Drew
(2001) and Lopez de Bertodano (1998). On the other hand, the model of Lopez de Bertodano with
a constant coefficient (1991) compares less favorably with the experimental results. Indeed, this

Fig. 5. Dimensionless void fraction profiles at selected measuring stations for polydisperse simulations of a bubbly

mixing layer. Symbols: Experimental data. Dashed line: no turbulent dispersion model. Solid line: Lopez de Bertodano

(1991) with uniform coefficient, CL
TD ¼ 500. Dotted lines: Carrica et al. and Lopez de Bertodano, 1998 with CC

TD ¼ 1:2
and CL

TD ¼ C1=4
l =ðStð1þ StÞÞ, respectively, which are virtually indistinguishable within the resolution of these plots.

Figure (a) shows the inlet boundary condition.
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model predicts two different slopes, one in the low velocity region, and a different one in the high
velocity region.
The success of the models of Carrica et al., Drew and Lopez de Bertodano may be explained by

the fact that the lift and virtual mass forces were negligible, thus leaving us only with turbulent
dispersion to compensate for the drag force, which is the situation for which these models were
derived. The differences in behaviour between the uniform and non-uniform versions of the Lopez
de Bertodano model stems mainly from the differences in the spatial distributions of k and mT
throughout the flow domain. It is also worth mentioning that there was no significant difference
between the results of the model of Carrica et al. for the coefficients CC

TD ¼ 1:0 and 1.2.
Variations in the probability density function of the bubble population, PDF, along the test

section, were not measurable (Martinez and Lasheras, 1997). This experimental finding is in
agreement with the the prediction by the simulations that turbulent mixing counteracts buoyancy
and prevents segregation of the bubbles by size. That is, the PDF predicted when no turbulent
dispersion model is used depends strongly on position, while that predicted by the models of
Carrica et al. (1999), Drew (2001) and Lopez de Bertodano (1998) is practically independent of
position.

8. Conclusions

Several turbulent dispersion models have been benchmarked against DNS data for a bubbly
flow with Db ¼ 42 lm and Kolmogorov length scale g ¼ 75 lm. This is the first work that vali-
dates turbulent dispersion models in a way that minimizes the modeling uncertainties introduced
by factors such as the lift force on the bubbles, or the usage of a turbulence model to characterize
the turbulence of the phases.
The model of Carrica et al. (1999), Drew (2001) and Lopez de Bertodano (1998) successfully fit

the DNS results in the region x > 1 for CC
TD ¼ 1:2, while that of Lopez de Bertodano (1991)

renders a good fit for CL
TD ¼ 500. In order to assess the prediction capabilities of these models,

bubbly mixing layer data were simulated. The models of Carrica, Drew and Lopez de Bertodano,
with a non-uniform coefficient, produced the best results. Indeed, these three models produced
almost identical results, as was expected from theoretical considerations. In contrast, the constant
coefficient version of Lopez de Bertodano (1991) failed to predict the experimental data. This
latter model should be used only in flows where the Stokes number is almost constant in the
computational domain. It is stressed that these mixing layer simulations are a true assessment of
prediction capabilities in the low Stokes number limit, as no coefficient was fitted to the data.
The Schmidt number Scb ¼ 0:83 ¼ 1=CC

TD ¼ 1=1:2 seems a reasonable value when compared to
the Schmidt number, Sc ¼ 0:7 reported for particle flow in jets and mixing layers (Crowe et al.,
1988; Faeth, 1987; Yakhot and Orzag, 1986). A non-trivial result at Scb ¼ 0:83 was found, which
highlights the fact that even bubbles of diameter approximately a half of the Kolmogorov length
scale do not behave as passive scalars for which Scb ¼ 1.
The results presented in this work are strictly valid in the small Stokes number limit. Within this

range (St < 10�2) Martinez and Lasheras (2001) experimentally observed that dispersion is in-
dependent of bubble size, in agreement with our result that the same dispersion coefficients can be
used for the mixing layer and the DNS data, spite of differences in the Stokes number. It remains
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to explore the behavior of Carrica et al. model for larger bubbles, where Db is on the order of
millimeters and the Stokes number is no longer much smaller than unity. However, experimental
data for fully developed pipe flow suggest that Carrica et al.�s model should have a turbulence
dispersion coefficient on order of unity even for bubbles as large as Db ¼ 2 mm. The marked
insensitivity of the models to errors in the liquid phase turbulence predictions helps explain why
CC
TD is essentially constant for a wide variety of flows and bubble sizes.
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